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Abstract: We report an enantioselective desymmetrization of
cyclopropenes by intermolecular Rh-catalyzed hydroacylation.
Cyclopropylketones, bearing quaternary stereocenters, are pro-
duced with diastereocontrol (up to >20:1) and excellent enan-
tiomeric excess (up to >99 ee).

Cyclopropanes are relevant structures in physical organic, natural
product, and medicinal chemistry.1 As a result, this three-membered
motif has inspired various methods for its synthesis.1,2 Our laboratory
aims to design atom-economical and stereoselective methods for
synthesis,3 particularly by catalytic hydroacylation.4 To make cyclo-
propanes bearing vicinal stereocenters, we imagined a novel intermo-
lecular hydroacylation of cyclopropenes (eq 1).5 In general, intermo-
lecular hydroacylation is difficult to achieve due to competing
pathways, namely decarbonylation and catalyst decomposition.4 How-
ever, we reasoned the strain energy released by reducing the cyclo-
propene would favor hydroacylation over these pathways.6

To date, only three other highly enantioselective intermolecular
hydroacylations have been published, featuring allenes,7a acrylamides,7b

and homoallylic sulfides.7c Norbornenes,7d norbornadienes,7d and 1,5-
hexadiene7e also undergo hydroacylation, but with moderate enanti-
oselectivity. Encouraged by these studies, we searched for a Rh-
complex to catalyze hydroacylation of achiral cyclopropene 2a using
salicylaldehyde 1a (Table 1). We chose 1a because its phenolic oxygen
is known to coordinate to Rh and promote hydroacylation.7d-g In the
absence of catalyst, no transformation was observed.

We evaluated various catalysts, prepared in situ by adding different
ligands to [Rh(cod)Cl]2. A family of ferrocene-based phosphines
proved promising. Using dppf as a ligand resulted in 25% conversion
of aldehyde 1a to the cyclopropylketone 3a (entry 1). Previous reports
suggest that inorganic bases promote hydroacylation,7d-g possibly by
deprotonating phenol to form phenolate, a better coordinating substrate.
Indeed, a catalytic amount of K3PO4 completely transformed 1a to 3a
with 5:1 dr (entry 2). To achieve asymmetric induction, we tested
various chiral Josiphos ligands.8 Among those tested, the more electron-
rich and sterically bulky ligands gave better yields and enantioselec-
tivity (cf entries 3-5). With further optimization using Josiphos ligand
L4, cyclopropylketones 3a were produced with 13:1 dr in favor of the
trans-diastereomer, as determined by NMR analysis (5 mol % Rh,
entry 6). The observed diastereoselectivity suggests that Rh-hydride
insertion (and subsequent C-C bond reductive elimination) prefer-
entially occurs on the cyclopropene face opposite the larger substituent
(i.e., the phenyl group). The major diastereomer was produced in 98%
ee, and the minor in 88% ee (Table 2, entry 1).

With one protocol, we prepared cyclopropylketones from 12 readily
available arylaldehydes (Table 2). Salicylaldehydes, with substituents

at the ortho-, meta-, or para-positions, were efficiently oxidized to
aryl ketones (entries 2-11). Steric bulk at the 3- or 6-position on the
aryl ring was accommodated by the catalyst (92 to >99% yields, 98
to >99% ee’s, entries 2-4, 11). Substrates with electron-donating (e.g.,
Me-, tBu-, MeO-) or electron-withdrawing (e.g., -COOMe, -F,
-Cl) groups were transformed to their corresponding cyclopropylke-
tones (entries 6-10). Likewise, hydroacylation between 2-naphthal-
dehyde 1l and cyclopropene 2a gave cyclopropane 3l (90% yield, 13:1
dr). The major diastereomer was produced in 95% ee. By single crystal
X-ray analysis, the absolute configuration of the major diastereomer
was found to be the (1S,2S)-isomer whereas the minor diastereomer
was the (1S,2R)-isomer.8

Next, we subjected cyclopropenes bearing different quaternary
carbon centers to hydroacylation (Table 3). Cyclopropenes 2b and 2c
having electron-deficient aryl groups underwent hydroacylation with
similar efficiency to model 2a (93-94% yields, 98 to >99% ee, entries
1-2) but slightly lower diastereoselectivity (10:1 and 6:1, respectively).
Cyclopropenes bearing more electron-rich aromatic rings appear to
undergo hydroacylation with higher diastereoselectivity. Indeed, hy-
droacylation of cyclopropenes bearing heteroaromatic rings (2d and
2e) result in >20:1 dr’s and 99% ee’s (entries 3 and 4). Cyclopropene
2f, bearing a Lewis basic group (CH2OMe), was transformed to the
major product, trans isomer 3f (76% yield, 98% ee, entry 5). A
naphthalene-substituted cyclopropene 2g resulted in the corresponding
cyclopropylketone 3g in excellent yield and enantiomeric excess (>99%
yield, 99% ee for the trans-isomer, 10:1 dr, entry 6). Lastly, we

Table 1. Rh-Catalyzed Cyclopropene Hydroacylation: Ligand
Impact on Stereoselectivitya

a Conditions: 0.1 mmol of 1a, 0.12 mmol of 2a, 30 mol % K3PO4, 60
°C, 48 h. b 0.2 mmol of 1a, 0.3 mmol of 2a, 5 mol % Rh, 5 mol % ligand,
10 mol % K3PO4, 70 °C, 12 h. dr’s based on 1H NMR integration of reac-
tion mixture; ee’s determined by chiral HPLC analysis.
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performed hydroacylation on cyclopropene 2h to afford 4h featuring
a spiro-quaternary carbon center in >99% ee and 3.5:1 dr (eq 4).
Through X-ray crystallography with copper irradiation, the absolute
configuration of the trans-4h product was found to be the (1S,2S)-
isomer.8

To conclude, intermolecular Rh-catalyzed hydroacylation yields
enantioenriched cyclopropylketones with vicinal tertiary and qua-
ternary chiral centers. Our catalytic method complements the few

existing ways to make quaternary carbon-substituted cyclopropanes5

and represents a rare asymmetric cyclopropene reaction.5f,9 These
findings highlight the use of strain energy for enantioselective
catalytic transformations of C-H bonds.
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Table 2. Hydroacylation with Various Salicylaldehydesa

a Conditions: 0.2 mmol of 1, 0.3 mmol of 2a. b Based on 1H NMR
integration of the crude reaction mixture. c Isolated yields, ee’s were
determined by chiral HPLC analysis.

Table 3. Hydroacylation of Various Cyclopropenesa

a Conditions: 5 mol % catalyst, 10 mol % K3PO4, 70 °C, 12 h, 0.2
mmol of 1a, 0.3 mmol of 2. b 30 mol % K3PO4, 24 h. c Based on 1H
NMR integration of crude reaction mixture. d Isolated yields, ee’s were
determined by chiral HPLC analysis.
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